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Abstract. The fourth-order cumulant of the magnetization, the Binder cumulant, is determined at the
phase transition of Ising models on square and triangular lattices, using Monte Carlo techniques. Its value
at criticality depends sensitively on boundary conditions, details of the clusters used in calculating the
cumulant, and symmetry of the interactions or, here, lattice structure. Possibilities to identify generic
critical cumulants are discussed.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 05.10.Ln Monte Carlo method

1 Introduction

In the field of phase transitions and critical phenomena,
the fourth order cumulant of the order parameter [1], the
Binder cumulant U , plays an important role. Among oth-
ers, the cumulant may be used to compute the critical
exponent of the correlation length, and thence to identify
the universality class of the transition, characterised , e.g.,
by the values of the bulk critical exponents [2].

The value of the Binder cumulant at the transition
temperature in the thermodynamic limit U∗, the critical
Binder cumulant, has received much attention as well [3],
being a measure of the deviation of the corresponding dis-
tribution function of the order parameter from a Gaussian
function. However, there seem to be conflicting statements
about its ‘universality’. For concreteness and simplicity,
let us consider here and in the following results within the
universality class of the two-dimensional Ising model, with
the magnetization as the order parameter. In particular,
in the case of the isotropic spin-1/2 Ising model with ferro-
magnetic nearest-neighbour couplings on a square lattice
with L2 spins, the critical cumulant has been determined
very accurately in numerical work, applying Monte Carlo
techniques [4] and transfer-matrix methods [5] augmented
by finite-size extrapolations to the thermodynamic limit,
L −→ ∞. The resulting value, employing full periodic
boundary conditions, is U∗ = 0.61069... [5]. For other re-
lated two-dimensional models on square lattices, including
the nearest-neighbour XY-model with an easy axis and the
spin-1 Ising model, estimates of U∗ have been reported
which seem to be consistent with this value [4–12]. Actu-
ally, the quoted value for U∗ has been sometimes believed
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to be ‘universal’, i.e. to be generic for the two-dimensional
Ising universality class.

On the other hand, the possible dependence of the crit-
ical cumulant, for instance, on boundary conditions has
been noted already by Binder in his pioneering work [1].
Indeed, different values of U∗ have been obtained when
considering various boundary conditions, lattice struc-
tures (or anisotropic interactions) as well as aspect ratios,
staying in the universality class of the two-dimensional
Ising model [3,5,13–16]. Some of the results can be re-
lated to each other by suitable transformations. For in-
stance, applying periodic boundary conditions, the critical
cumulant of the nearest-neighbour Ising model with differ-
ent vertical and horizontal couplings may be mapped onto
that of the isotropic model on a rectangular lattice with
aspect ratio r [5,16]. Such a scale transformation, keeping
rectangular symmetry and employing periodic boundary
conditions, does not exist, however, for Ising models with
nearest neighbour and anisotropic next-nearest neighbour
interactions on a square lattice (with the triangular lattice
of rhombus shape being a special case of that anisotropy
[16,17]). This fact has been demonstrated by Chen and
Dohm [17] using renormalization group arguments, and it
has been confirmed in Monte Carlo simulations [16,18]. It
shows a violation of the two-scale factor universality for
finite-size effects [19], in general, and, specifically, of the
universality of the critical Binder cumulant.

The aim of this paper is, to study spin-1/2 Ising models
with nearest neighbour interactions on square and triangu-
lar lattices in order to analyse in a systematic way possible
dependences of the critical Binder cumulant on boundary
conditions, clusters used in calculating the cumulants, and
lattice structure (or anisotropy of the interactions).

The paper is organized as follows: In the next sec-
tion, the model and the method are introduced, and the
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Binder cumulant is defined. Then, simulational results will
be presented, arranged according to boundary conditions.
Finally, the findings will be summarized briefly.

2 Model and method

We consider spin-1/2 Ising models on square and triangu-
lar lattices with nearest neighbour ferromagnetic interac-
tions, J . The Hamiltonian reads

H = −J
∑

(x,y),(x′,y′)

Sx,ySx′,y′ (1)

where Sx,y = ±1 is the spin at site (x, y). Sums are taken
over all pairs of nearest-neighour sites (x, y), (x′, y′). x and
y refer to symmetry axes of the lattices. Usually, lattices of
linear dimensions L and K = rL will be simulated, r is the
aspect ratio. As indicated above, the triangular case is iso-
morphic to an anisotropic Ising model on a square lattice
with nearest-neighbour couplings augmented by half of
the next-nearest neighbour couplings, also of strength J ,
along one diagonal direction of the lattice [16,17,20].

Our aim is to study the Binder cumulant at the phase
transition temperature Tc. For both lattice structures, the
exact critical temperature is known. For the square lattice,
one gets [21]

kBTc/J = 2/ ln(
√

2 + 1) = 2.26918... (2)

For the triangular lattice, the critical temperature is given
by [22]

kBTc/J = 2/ ln
(√

3
)

= 3.64095... (3)

The fourth order cumulant of the magnetization, i.e. the
Binder cumulant, for a spin cluster C is defined by [1]

U(T, C) = 1 − 〈M4〉C/(3〈M2〉2C) (4)

where 〈M2〉C and 〈M4〉C denote the second and fourth
moments of the magnetization in that cluster, taking ther-
mal averages. In principle, clusters of various sizes or
shapes and systems with different boundary conditions
may be studied. In the Ising case, the cumulant approaches
in the thermodynamic limit (with the cardinal number
|C| −→ ∞) the value 2/3 at temperatures T < Tc,
while it tends to zero, reflecting a Gaussian distribution
of the magnetization histogram, at T > Tc [1]. At Tc,
U∗ = U(Tc, |C| −→ ∞) acquires a nontrivial value, the
critical Binder cumulant.

To study systematically the possible dependence of
the critical cumulant for two-dimensional Ising models on
boundary conditions, the choice of clusters C as well as
the lattice type (or, more basically [17], the anisotropy of
interactions), we performed Monte Carlo simulations for
both lattice types at criticality.

Note that simulational data of high accuracy are
needed, to obtain reliable estimates for U∗. We computed
systems of various shapes and sizes, usually with up to
about 4 × 103 spins. In general, the (moderate) system

sizes already seem to allow for a smooth extrapolation to
the thermodynamic limit. Using the standard Metropolis
algorithm (a cluster flip algorithm becomes significantly
more efficient for larger system sizes), Monte Carlo runs
with up to 109 Monte Carlo steps per site, for the largest
systems, were performed, averaging then over several, up
to about ten, of these runs to obtain final estimates, and
to determine the statistical error bars shown in the fig-
ures. We computed not only the cumulant, but also other
quantities like energy and specific heat, to check the accu-
racy of our data. Of course, for sufficiently small lattices
thermal averages may be obtained exactly and easily by
direct enumeration.

3 Results

The critical Binder cumulant depends sensitively on the
boundary conditions. In fact, Ising systems with periodic
and free boundary conditions will be analysed here. In
addition, the Ising model on a square lattice with mixed,
free and periodic, boundary conditions will be considered.

3.1 Periodic boundary conditions

Employing full periodic boundary conditions, with the
cluster C comprising the entire system, U∗ has been de-
termined accurately before, both for square and triangu-
lar lattices. For the square lattice (square shape), one gets
U∗

s = 0.61069... [4,5,16], and for the triangular lattice
(rhombus shape), one finds a slighty different, but distinct
value, U∗

t = 0.61182... [5,16].
Less attention has been paid in the past, however, to

different choices of clusters. In his pioneering work [1],
Binder considered square subblocks for the Ising model on
a square lattice. In particular, for systems of L2 spins, the
clusters then correspond to subblocks of size L′2, where
L′ = bL, with the subblock factor b ≤ 1. The finite-size de-
pendence of the cumulant at criticality has been discussed
as well. For the two-dimensional Ising model, the leading
correction term to the critical cumulant is argued [1] to
behave like U∗ − Uc(Tc, L) ∝ 1/L.

In the original analysis [1], the subblock sizes L′ have
been enlargened at fixed L. We pursue a somewhat dif-
ferent strategy in computing cumulants at Tc by fixing
the subblock factor b and then enlargening the linear di-
mension of the lattice with L2 spins (applying periodic
boundary conditions). In particular, we set b = 1, 1/2,
1/4, and 1/8. Some representative data of our simulations
are depicted in Figure 1. Increasing the system size L, the
cumulant at criticality allows for a smooth and reliable ex-
trapolation to the thermodynamic limit, yielding U∗

b . U∗
b

is observed to decrease with decreasing subblock factor b,
and we estimate U∗

b = 0.5925± 0.0005, 0.577± 0.001, and
0.568±0.0015 for b = 1/2, 1.4 , and 1/8, respectively. Plot-
ting now U∗

b against b, we obtain, in the limit b −→ 0, the
critical cumulant, U∗

b=0 = 0.560±0.002. This estimate may
be checked by fixing L′ and increasing L to estimate U∗

L′ ,
see Figure 2. U∗

L′ is found to depend only rather weakly
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Fig. 1. Binder cumulant U(Tc, L) vs. 1/L using subblocks of
linear size L′ = bL for b = 1 (squares), 1/2 (diamonds), and
1/4 (circles) in the Ising model with L2 sites on a square lattice,
employing full periodic boundary conditions. The square with
a cross, at 1/L = 0, refers to the result of reference [4].

on L′, L′ ≥ 4. Taking into account estimates for L′ = 4,
8, and 16, we arrive at a value for U∗

b=0, which agrees
nicely with the one quoted above. Note that the critical
cumulant in the limit b −→ 0 refers to arbitrarily large
clusters or subblocks being eventually embedded in their
indefinitely larger ‘natural’ heat bath. In that sense, the
clusters themselves are subject to a ‘heat bath boundary
condition’. This boundary condition is expected to per-
turb the intrinsic bulk fluctuations of the magnetization
of the cluster only very mildly. Therefore, U∗

b=0 may be a
candidate for a critical Binder cumulant, which is robust
against various modifications of the model. Indeed, within
the accuracy of the simulations, one obtains the same esti-
mate for the critical cumulant, b −→ 0, when one replaces
the periodic boundary conditions by free boundary condi-
tions, as will be discussed below.

The critical cumulant for the heat bath boundary con-
dition of the clusters, b = 0, is found to depend for rect-
angular subblocks, L′ × rCL′, on their aspect ratio rC ,
tending to decrease significantly, as rC deviates more and
more from one.

Moreover, when going from square to triangular lat-
tices, using periodic boundary conditions and subblocks
of L′2 spins, the critical cumulant U∗

b=0 is observed to be
very close to that for the square lattice. The possible dif-
ference occurs, perhaps, in the third digit. But already for
b = 1, the difference between U∗

s and U∗
t is quite small.

Here, the heat bath boundary condition for the clusters,
b = 0, tends to reduce such differences furthermore, and
one has to be careful in drawing definite conclusions. In-
deed, on physical grounds I tend to believe that also under
heat bath boundary conditions for the subblocks, there is
a difference in the value of the critical cumulant for the tri-
angular and the square lattice, unless one uses subblocks
of special shapes, as will be discussed below.

Fig. 2. Fourth-order cumulant U(Tc, L), using subblocks of
linear size L′= 4 (squares) and 8 (diamonds) as clusters, ver-
sus 1/L for square lattices of linear dimension L, employing
periodic (broken lines) and free (solid lines) boundary condi-
tions.

3.2 Mixed boundary conditions

We study the Ising model on a square lattice consisting
of L lines, running from left to right, having L sites or
spins in each line. At the bottom and top, free bound-
ary conditions are employed, while the left and right hand
sides are connected by periodic boundary conditions. The
Hamiltonian, equation (1), is slightly extended by still
assuming ferromagnetic nearest neighbour interactions,
which now may be different in the two surface lines at the
top and bottom Js, as compared to those Jb, in the bulk,
i.e. when at least one spin of the nearest neighbour pair of
spins is not in a surface line, as usually assumed [23–26].

Let us first consider Js = Jb. To compute the critical
cumulant, U∗

mixed, we take clusters C consisting of all,
L2, thermally excitable spins. Results for various system
sizes are depicted in Figure 3. Again, the data may be
smoothly extrapolated to the thermodynamic limit, L −→
∞, leading to the estimate U∗

mixed = 0.514± 0.001.
When varying Js/Jb, the cumulant appears to depend

strongly on the ratio of the surface to the bulk coupling,
considering systems of fairly small sizes, see Figure 3 for
Js/Jb = 0.1. 1.0, and 2.0. However, in the thermodynamic
limit, the critical cumulant seems to approach a unique
value, independent of Js/Jb, as may be inferred also from
that figure.

It is well known that the critical behaviour of the bulk
is distinct from that of the surface [23–26]. In particular,
in the two-dimensional case, the vanishing of the surface
magnetization, on approach to Tc, is described by a power
law with an exponent 1/2, while the exponent of the bulk
magnetization is 1/8 [26–28]. Thence, it may be interest-
ing to restrict the clusters C to the surface lines at the
bottom and top of the lattice, in analogy to what has
been done before for Ising films in three dimensions [29].
Here, we find that the critical cumulant tends to vanish in
the thermodynamic limit, reflecting a Gaussian distribu-
tion of the histograms for the surface magnetization. The
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Fig. 3. Binder cumulant U(Tc, L) for the Ising model with
mixed boundary conditions and L2 spins on a square lattice as
a function of 1/L, varying the ratio Js/Jb = 0.1 (squares), 1.0
(diamonds), and 2.0 (circles).

vanishing may be explained by the fact that the surface is
one-dimensional in our case.

3.3 Free boundary conditions

Free boundary conditions allow one to study arbitrary
shapes of the lattice. Moreover, when compared to pe-
riodic boundary conditions, they are more realistic.

Let us first consider square and triangular lattices with
L2 spins, i.e. with aspect ratio r = 1, applying free bound-
ary conditions at the four sides of the system. The clus-
ters C are comprising all spins, b = 1. As may be inferred
from Figure 4, the critical cumulant, in the thermody-
namic limit, may be estimated from a smooth extrapola-
tion of the simulational data. The resulting values deviate
appreciably for the two different lattice structures: for the
square lattice, we find U∗

fbc,s = 0.396± 0.002, while for the
triangular lattice, we obtain U∗

fbc,t = 0.379 ± 0.001. Ac-
cordingly, free boundary conditions are very useful to show
the relevant influence of the lattice type (or anisotropy of
the interactions) on the critical Binder cumulant. In com-
parison, the difference in the critical cumulant for the Ising
model on square and triangular lattices is rather small in
the case of periodic boundary conditions, see above.

The critical cumulant is expected to depend on the as-
pect ratio, as we confirmed by considering square lattices
with the aspect ratio r = 1/2. The critical cumulant U∗
is estimated to be 0.349± 0.002.

We also computed the cumulant, for the square lattice,
with the clusters C being square subblocks of fixed linear
dimension L′, to study the effect of heat bath boundary
conditions, with the subblock factor b −→ 0. As illus-
trated in Figure 2, by increasing L, the resulting critical
cumulant U∗

fbc(L
′) tends to approach the same value as in

the case of periodic boundary conditions using the same
subblocks L′. The finite-size correction term of the cumu-
lant has opposite sign for the two boundary conditions,
see Figure 2. We conclude that there is strong evidence

Fig. 4. Binder cumulant U(Tc, L(R)) at criticality for square
(squares) and triangular (triangles) lattices with free boundary
conditions along two symmetry axes of the lattices (broken
lines) and along discretized circles (solid lines) as a function of
1/L and 1/LR, respectively.

that the critical cumulant acquires the same value for free
and periodic boundary conditions, when the clusters are
embedded in their natural heat bath. We tend to suggest,
that the very same value holds for other boundary condi-
tions as well. On the other hand, as discussed above, the
critical cumulant U∗, in the limit b −→ 0, still depends on
the shape of the clusters and, presumably, on the lattice
type (or anisotropy of interaction).

The (‘non-universal’) dependences of U∗ may be partly
explained by the fact, that the shape of the cluster C
does not fit to the spatial structure of the spin corre-
lation function. Indeed, we propose that an appropriate
cluster shape follows from the Wulff construction at criti-
cality [30], which determines equilibrium shapes and pre-
serves the intrinsic symmetry of the correlations. In the
case of square and triangular lattices, this consideration
leads to free boundary conditions of circular shape. Inter-
preting the Ising model on the triangular lattice as a model
with anisotropic next-nearest neighbour interactions on a
square lattice, the circle would transform into an ellipse,
rotated with respect to the principal axes, on the square
lattice. Obviously, for finite radii, the circular shape may
be approximated by a discretization. More concretely, we
define a radius R from the center of the square or tri-
angular lattice, and we keep all spins, NR, within this
radius as active, thermally excitable spins, while the re-
maining spins are set to be equal to zero. From that con-
struction, an effective linear dimension LR may be defined
by LR =

√
NR (being proportional to an effective radius

of the cluster). In the thermodynamic limit, R −→ ∞,
one arrives at a perfect circle. Certainly, an analogous ap-
proach is feasible for clusters with heat bath boundary
conditions, b = 0, being, however, more cumbersome, be-
cause one had to take, at each given radius, the thermo-
dynamic limit L −→ ∞.

Simulational data for both lattices with discretized cir-
cular free boundary conditions are depicted in Figure 4.
In contrast to the case of free boundary conditions along
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Table 1. Selected critical Binder cumulants of the two-
dimensional Ising model with periodic (pbc), free (fbc), mixed,
and heat bath (hbbc), b = 0, boundary conditions on the
square or triangular (tri) lattice, considering various system
shapes, see text.

Boundary Lattice Shape U∗

pbc square square 0.61069... [5]
pbc tri rhombus 0.61182... [5]
fbc square square 0.396 ± 0.002
fbc tri rhombus 0.379 ± 0.001
mixed square square 0.514 ± 0.001
hbbc square square 0.560 ± 0.002
fbc square, tri circle 0.406 ± 0.001

symmetry axes of the lattices, the critical cumulants for
both lattices now tend to approach close-by, if not iden-
tical values, U∗

circle = 0.406 ± 0.001. Of course, further
numerical as well as analytical work will be very useful to
clarify this interesting aspect.

4 Summary

In this article, we estimated, using Monte Carlo tech-
niques, the critical Binder cumulant U∗ for Ising models
with nearest neighbour interactions on square and triangu-
lar lattices, employing various boundary conditions, types
of clusters, and aspect ratios. Selected examples are listed
in Table 1.

In particular, in the case of periodic boundary condi-
tions we considered square clusters with decreasing sub-
block factor b. In the limit b = 0, we estimate, for the
square lattice, U∗

b=0 = 0.560±0.002. The critical cumulant
is observed, when studying clusters of rectangular shapes,
to depend on their aspect ratio. The, presumably, rather
weak dependence of U∗

b=0 on the lattice structure for these
‘heat bath boundary conditions’ for the clusters is not re-
solved in our simulations.

For the Ising model with mixed boundary conditions,
analysing square lattices with the aspect ratio r = 1 and
clusters comprising all spins, the strength of the surface
coupling is found to be irrelevant for the critical cumulant.
For clusters containing only the surface spins, the fluctua-
tions of the surface magnetization seem to be of Gaussian
form with vanishing U∗. This behaviour reflects the fact
that the surface is a one-dimensional object here.

Applying free boundary conditions, the critical Binder
cumulants U∗ for systems with the aspect ratio r = 1
and clusters including all spins, b = 1, are cleary different
for square and triangular lattices (U∗

fbc,s = 0.396± 0.002,
U∗

fbc,t = 0.379± 0.001). They differ significantly from the
known corresponding values for periodic boundary condi-
tions. In the limit b = 0, we obtain for the square lattice
an estimate for U∗

b=0 which agrees, within the error bars,
with the one for periodic boundary conditions. Perhaps
most interestingly, employing free boundary conditions for
clusters of circular form, we find numerical evidence for
a unique value, both for square and triangular lattices,

U∗
circle = 0.406 ± 0.001. In general, we suggest that the

dependence of the critical cumulant on the anisotropy of
interactions or the lattice structure may be overcome by
using cluster shapes obtained from the Wulff construction
at criticality.

Certainly, previous standard analyses of the critical
cumulant, using especially periodic boundary conditions
with the subblock factor b = 1, are not invalidated by our
study, when they are interpreted properly. In particular,
when comparing critical cumulants on different models,
one has to make sure that the models satisfy the same
symmetries determined by, for instance, the interactions
and/or lattice structure. In other words, for such analy-
ses universality of the critical cumulant holds in a rather
restricted sense, when compared to universality of critical
exponents. In any event, care is needed in applying the
critical Binder cumulant when one tries to identify uni-
versality classes or the location of the phase transition.

In general, a finite-size scaling theory including bound-
ary conditions, system shapes and anisotropy of inter-
actions would be desirable, extending previous descrip-
tions [3,17,19,31].

Useful discussions with V. Dohm, D. Stauffer, L.N. Shchur,
and W. Janke are gratefully acknowledged.
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5. G. Kamieniarz, H.W.J. Blöte, J. Phys. A: Math. Gen. 26,
201 (1993)

6. K. Binder, D.P. Landau, Surf. Sci. 151, 409 (1985)
7. A. Milchev, D.W. Heermann, K. Binder, J. Stat. Phys. 44,

749 (1986)
8. W. Janke, M. Kattot, R. Villanova, Phys. Rev. B 49, 9644

(1994)
9. C. Holm, W. Janke, T. Matsui, K. Sakakibara, Physica A

246, 633 (1997)
10. G. Schmid, S. Todo, M. Troyer, A. Dorneich, Phys. Rev.

Lett 88, 167208 (2002)
11. W. Rzysko, A. Patrykijew, K. Binder, Phys. Rev. B 72,

165416 (2005)
12. M. Holtschneider, W. Selke, R. Leidl, Phys. Rev. B 72,

064443 (2005)
13. T.W. Burkhardt, B. Derrida, Phys. Rev. B 32, 7273 (1985)
14. A. Drzewinski, J. Wojtkiewicz, Phys. Rev. E 62, 4397

(2000)
15. R. Hilfer, B. Biswal, H.G. Mattutis, W. Janke, Phys. Rev.

E 68, 046123 (2003)
16. W. Selke, L.N. Shchur, J. Phys. A: Math. Gen. 38, L739

(2005)
17. X.S. Chen, V. Dohm, Phys. Rev. E 70, 056136 (2004); X.S.

Chen, V. Dohm, Phys. Rev. E 71, 059901(E) (2005)



228 The European Physical Journal B

18. M. Schulte, C. Drope, Int. J. Mod. Phys. C 16, 1217; M.A.
Sumour, D. Stauffer, M.M. Shabat, A.H. El-Astal, Physica
A (2006, in press)

19. V. Privman, M.E. Fisher, Phys. Rev. B 30, 322 (1984)
20. A.N. Berker, K. Hui, Phys. Rev. B 48, 12393 (1993)
21. L. Onsager, Phys. Rev. 65, 117 (1944)
22. R.M.F. Houtappel, Physica 16, 425 (1950)
23. K. Binder, in Phase Transitions and Critical Phenomena,

edited by C. Domb, J.L. Lebowitz (Academic Press, New
York, 1983), Vol. 8

24. H.W. Diehl, in Phase Transitions and Critical Phenomena,
edited by C. Domb, J.L. Lebowitz (Academic Press, New
York, 1986), Vol. 10

25. M. Pleimling, J. Phys. A: Math. Gen. 37, R79 (2004)
26. F. Igloi, I. Peschel, L. Turban, Adv. Phys. 42, 683 (1993)
27. M.C. Chung, M. Kaulke, I. Peschel, M. Pleimling, W.

Selke, Eur. Phys. J. B 18, 655 (2000)
28. W. Selke, F. Szalma, P. Lajko, F. Igloi, J. Stat. Phys. 89,

1079 (1997)
29. D.P. Landau, K. Binder, Phys. Rev. B 41, 4633 (1990)
30. D.B. Abraham, in Phase Transitions and Critical

Phenomena, edited by C. Domb, J.L. Lebowitz (Academic
Press, New York, 1986), Vol. 10

31. T. Antal, M. Droz, Z. Racz, J. Phys. A: Math. Gen. 36, 1
(2003)


